Search results

Search for "reductive elimination" in Full Text gives 141 result(s) in Beilstein Journal of Organic Chemistry.

Carbonylative synthesis and functionalization of indoles

  • Alex De Salvo,
  • Raffaella Mancuso and
  • Xiao-Feng Wu

Beilstein J. Org. Chem. 2024, 20, 973–1000, doi:10.3762/bjoc.20.87

Graphical Abstract
  • reaction mechanism proceeds with an initial reduction of Pd(II) to Pd(0) followed by oxidative addition on the ArCH2–Cl bond to form the ArCH2–PdII–Cl complex. Then, insertion of CO, from TFBen, takes place followed by nucleophilic displacement and reductive elimination. The obtained compound undergoes
  • reductive elimination and the generated Pd(0) species gets oxidated by the oxygen to the active Pd(II) species (Scheme 7). Synthesis of indoles by metal-catalyzed reductive cyclization reaction of organic nitro compounds with carbon monoxide as reductant In the last 60 years, the metal-catalyzed
  • ). The proposed mechanism, shown in Scheme 34, suggested that the process proceeded through a Pd(0) catalysis proceeding through first an intramolecular Heck reaction, followed by CO insertion, N-cyclization (anilines) or O-cyclization (phenols) and final reductive elimination. Carbonylative
PDF
Album
Review
Published 30 Apr 2024

Advancements in hydrochlorination of alkenes

  • Daniel S. Müller

Beilstein J. Org. Chem. 2024, 20, 787–814, doi:10.3762/bjoc.20.72

Graphical Abstract
  • following mechanism (Scheme 30B): Initially, the terminal palladium species H, formed through the hydropalladation of terminal or internal alkenes (upon chain walking), coordinates to NCS via hydrogen bonding (I). Subsequent oxidation takes place to yield a Pd(IV) species (J), which then undergoes reductive
  • elimination, resulting in a Pd(II) complex and the corresponding alkyl chloride K. Conclusion Despite being regarded as uninteresting museum chemistry for a considerable time, recent advancements in the hydrochlorination of alkenes have significantly expanded its applicability. Approximately three decades ago
PDF
Album
Review
Published 15 Apr 2024

SOMOphilic alkyne vs radical-polar crossover approaches: The full story of the azido-alkynylation of alkenes

  • Julien Borrel and
  • Jerome Waser

Beilstein J. Org. Chem. 2024, 20, 701–713, doi:10.3762/bjoc.20.64

Graphical Abstract
  • would initially involve the addition of azide radicals to an alkene, generating a carbon-centered radical. Then, different trapping of this intermediate could be performed (Scheme 1B). First, C-centered radicals are known to recombine with metal-acetylides, in particular copper [27]. Reductive
  • elimination of the organometallic intermediate would lead to the desired product (Scheme 1B, reaction 1). Unfortunately, this approach will not be compatible in the case of azidation since the copper, azides and alkynes present in the mixture are expected to undergo alkyne–azide cycloaddition reactions [28
PDF
Album
Supp Info
Commentary
Published 03 Apr 2024

Mono or double Pd-catalyzed C–H bond functionalization for the annulative π-extension of 1,8-dibromonaphthalene: a one pot access to fluoranthene derivatives

  • Nahed Ketata,
  • Linhao Liu,
  • Ridha Ben Salem and
  • Henri Doucet

Beilstein J. Org. Chem. 2024, 20, 427–435, doi:10.3762/bjoc.20.37

Graphical Abstract
  • cycle involves the oxidative addition of 1,8-dibromonaphthalene. Then, a concerted metalation–deprotonation of the arene, which usually occurs at the ortho-position of an activating group such as a fluorine or a chlorine atom, followed by reductive elimination, gives the corresponding intermediate 1
PDF
Album
Supp Info
Full Research Paper
Published 23 Feb 2024

Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters

  • Carlos R. Azpilcueta-Nicolas and
  • Jean-Philip Lumb

Beilstein J. Org. Chem. 2024, 20, 346–378, doi:10.3762/bjoc.20.35

Graphical Abstract
  • intermediacy of free radicals, indicating the involvement of the SET pathway (Scheme 21C). Eventually, reductive elimination of 113 afforded product 114 while regenerating the catalytic species 109. It is worth nothing that further transformations of NHPI esters under photoinduced Cu catalysis have been
  • alkyl radical 12 is captured by intermediate 122, resulting in the formation of complex 123. At this point, the metal center has undergone a two-electron oxidation, making it well-suited for reductive elimination yielding the cross-coupling product 124. Under these catalytic conditions, various TM
  • -coupling product 127 is then formed via reductive elimination of 126 which gives NiI intermediate 128. At this stage, it is proposed that the NiI complex 128 can participate in a SET event with another equivalent of substrate 10, generating another equivalent of radical 12, that propagates into the next
PDF
Album
Perspective
Published 21 Feb 2024

Unveiling the regioselectivity of rhodium(I)-catalyzed [2 + 2 + 2] cycloaddition reactions for open-cage C70 production

  • Cristina Castanyer,
  • Anna Pla-Quintana,
  • Anna Roglans,
  • Albert Artigas and
  • Miquel Solà

Beilstein J. Org. Chem. 2024, 20, 272–279, doi:10.3762/bjoc.20.28

Graphical Abstract
  • energy barrier (ΔΔG = 0.9 kcal·mol−1). The formation of intermediate α-INT 3 and β-INT 3 was found endergonic by 9.3 and 7.6 kcal·mol−1, respectively. Subsequently, both site isomers of INT 3 can undergo reductive elimination with barriers of 6.9 and 9.4 kcal·mol−1 to deliver the corresponding
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2024

Metal-catalyzed coupling/carbonylative cyclizations for accessing dibenzodiazepinones: an expedient route to clozapine and other drugs

  • Amina Moutayakine and
  • Anthony J. Burke

Beilstein J. Org. Chem. 2024, 20, 193–204, doi:10.3762/bjoc.20.19

Graphical Abstract
  • (1a), followed by the oxygen-promoted insertion of the phenylboronic acid coupling partner 7 to deliver intermediate II that undergoes reductive elimination to give diarylamine 3a along with regeneration of the copper catalyst (Scheme 5). Then, a palladium-promoted oxidative addition of the C–Br bond
  • takes places to deliver palladium species III. Then the insertion of CO that is released by Mo(CO)6, should afford intermediate IV that undergoes a base-promoted intramolecular cyclization via nucleophilic attack of the amine [31]. Finally, the dibenzodiazepinone 4a would be obtained through reductive
  • elimination of the palladium catalyst. Conclusion In summary, we have reported two one-pot pathways and two step-wise pathways to access dibenzodiazepinone (DBDAP) derivatives via copper-catalyzed Chan–Lam amination/carbonylative cyclization and Buchwald–Hartwig amination/carbonylative cyclization and their
PDF
Album
Supp Info
Full Research Paper
Published 31 Jan 2024

Recent advancements in iodide/phosphine-mediated photoredox radical reactions

  • Tinglan Liu,
  • Yu Zhou,
  • Junhong Tang and
  • Chengming Wang

Beilstein J. Org. Chem. 2023, 19, 1785–1803, doi:10.3762/bjoc.19.131

Graphical Abstract
  • facilitated by the process of photoexcited radical decarboxylation. On the other hand, the copper catalytic cycle involved the capture of alkyl radicals by the copper complex B, the activation of heteroatom-containing substrates 30 by a base-mediated proton transfer, and the subsequent reductive elimination
  • process. This reductive elimination led to the formation of C(sp3)–X (X = O or N) cross-coupling products 31. Cyclization Radical-involved selective C–H functionalizations [25][26], particularly annulation reactions [26], have emerged as highly effective and powerful techniques in synthesis, possessing
PDF
Album
Review
Published 22 Nov 2023

N-Sulfenylsuccinimide/phthalimide: an alternative sulfenylating reagent in organic transformations

  • Fatemeh Doraghi,
  • Seyedeh Pegah Aledavoud,
  • Mehdi Ghanbarlou,
  • Bagher Larijani and
  • Mohammad Mahdavi

Beilstein J. Org. Chem. 2023, 19, 1471–1502, doi:10.3762/bjoc.19.106

Graphical Abstract
  • intermediate III. Reductive elimination of Pd from III gave product 5 and species IV. Finaly, Pd(II) species were reproduced by ligand exchange to restart the next cycle (Scheme 4). In 2014, Fu and co-workers described a facile method for the C–H thiolation of phenols 7 with 1-(substituted phenylthio
  • activated the N–S bond in II, which reacted with I to obtain IV, followed by C–S reductive elimination to give the thiolated product 30 or 31. On the other hand, the interaction of I with Cu(OAc)2 activated the N–S bond in III to afford IV, which was subjected to C–N reductive elimination to deliver the
  • reductive elimination to yield ketone 78. In the acylthiolation cycle, the azaphilic ZnCl2 activated NTSE 1’’’ via N–Zn coordination to facilitate the leaving ability of succinimide. Then, nucleophilic substitution of arylmagnesium bromide 75 to intermediate IV provided thioester 79. In 2022, Gao and co
PDF
Album
Review
Published 27 Sep 2023

Application of N-heterocyclic carbene–Cu(I) complexes as catalysts in organic synthesis: a review

  • Nosheen Beig,
  • Varsha Goyal and
  • Raj K. Bansal

Beilstein J. Org. Chem. 2023, 19, 1408–1442, doi:10.3762/bjoc.19.102

Graphical Abstract
  • activation to generate an aryl–Cu–NHC species. This is followed by the reaction with NHC–Pd to produce an Ar–Pd(NHC)Cl intermediate through the oxidative addition to Pd(0)NHC. Finally, transmetallation of [(It-Bu)Cu(Ar)] with [(SIPr)Pd(Ar)Cl] followed by reductive elimination leads to biaryl product. No
PDF
Album
Review
Published 20 Sep 2023

Visible-light-induced nickel-catalyzed α-hydroxytrifluoroethylation of alkyl carboxylic acids: Access to trifluoromethyl alkyl acyloins

  • Feng Chen,
  • Xiu-Hua Xu,
  • Zeng-Hao Chen,
  • Yue Chen and
  • Feng-Ling Qing

Beilstein J. Org. Chem. 2023, 19, 1372–1378, doi:10.3762/bjoc.19.98

Graphical Abstract
  • pivalic anhydride as activator to afford Ni(II) intermediate F. Subsequently, trapping of the alkyl radical C generates high-valent Ni(III) intermediate G, which undergoes facile reductive elimination to furnish the final coupling product 3 and Ni(I) intermediate H. The single-electron transfer (SET
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2023

Radical ligand transfer: a general strategy for radical functionalization

  • David T. Nemoto Jr,
  • Kang-Jie Bian,
  • Shih-Chieh Kao and
  • Julian G. West

Beilstein J. Org. Chem. 2023, 19, 1225–1233, doi:10.3762/bjoc.19.90

Graphical Abstract
  • functionalization via the canonical organometallic steps of oxidative addition/reductive elimination was ruled out via catalytic reaction of the macrocyclic Groves-type porphyrin catalyst V, a species that is unable to accommodate the mutual cis-orientation of ligands for metal-centered reductive elimination. The
PDF
Album
Perspective
Published 15 Aug 2023

Exploring the role of halogen bonding in iodonium ylides: insights into unexpected reactivity and reaction control

  • Carlee A. Montgomery and
  • Graham K. Murphy

Beilstein J. Org. Chem. 2023, 19, 1171–1190, doi:10.3762/bjoc.19.86

Graphical Abstract
  • literature to-date has shown that the vast majority of reactions follow the reductive elimination pathway to produce 4. However, a clear exception to this is in reactions with nucleophilic fluoride or [18F]fluoride, which reductively eliminate to exclusively generate fluoroarenes (e.g., 5). The rationale for
  • reductive elimination of iodobenzene to give 11 (Figure 5, left). This was also the pathway subsequently suggested by Gallos et al. [116] for the synthesis of 13/14 from 12. In 2003, Hadjiarapoglou further investigated the intermolecular reaction between 8 and cyclopentene under thermal, metal-free
  • , they believed that the reaction was likely initiated by either single electron transfer between the reagents (not shown), or by electrophilic addition of the olefin onto the ylide, forming intermediate adduct 17. This was followed by formation of iodocycle 18, from which reductive elimination of
PDF
Album
Review
Published 07 Aug 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
PDF
Album
Review
Published 28 Jul 2023

Pyridine C(sp2)–H bond functionalization under transition-metal and rare earth metal catalysis

  • Haritha Sindhe,
  • Malladi Mounika Reddy,
  • Karthikeyan Rajkumar,
  • Akshay Kamble,
  • Amardeep Singh,
  • Anand Kumar and
  • Satyasheel Sharma

Beilstein J. Org. Chem. 2023, 19, 820–863, doi:10.3762/bjoc.19.62

Graphical Abstract
  • elimination delivers the desired product 44 via the intermediate 49 (Scheme 10b). It was proposed that the enantioselectivity was mainly due to the C–C reductive elimination of the R-pathway, which is lower in energy than the S-pathway. Remote C–H alkylation Several remarkable studies have been reported for
  • addition of 1 gives the silyl-iridium complex 52. The insertion of aldehyde 50 into the Ir–Si bond of 52 provides the pyridyl alkyl iridium species 53 that finally by C–C formation via reductive elimination furnishes the desired products 51 along with the formation of an iridium hydride species (Scheme 11b
  • of the alkene provides the intermediate 57 which on subsequent reductive elimination furnishes the C4-alkylated products 55. Based on the deuterium exchange experiment, the author suggested that the steps involved in the catalytic cycle from 56A to 57 are reversible in nature, which may activate the
PDF
Album
Review
Published 12 Jun 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  • undergoing reductive elimination to afford to [2 + 2] adduct, β-oxygen elimination followed by E/Z isomerization and intramolecular lactonization generates the annulated coumarin scaffold. In 2003, the Cheng lab extended on this Ni-catalyzed ring-opening strategy [31]. It was noted the addition of 1.5
  • 25. Transmetalation of 25 with the organoboronic acid gives intermediate 26, which upon reductive elimination affords the difunctionalized product 21 and regenerates the Ni(0) catalyst. In 2019, the Stanley laboratory explored the Ni-catalyzed intermolecular three-component carboacylation of
  • to afford the acyl–Ni(II)–amido intermediate 30. Side-on coordination followed by migratory insertion of the bicyclic alkene selectively generates the exo-alkyl–Ni(II)–amido complex 31. Transmetalation with triarylborane affords 32 which undergoes reductive elimination to form the carboacylated
PDF
Album
Review
Published 24 Apr 2023

Transition-metal-catalyzed C–H bond activation as a sustainable strategy for the synthesis of fluorinated molecules: an overview

  • Louis Monsigny,
  • Floriane Doche and
  • Tatiana Besset

Beilstein J. Org. Chem. 2023, 19, 448–473, doi:10.3762/bjoc.19.35

Graphical Abstract
  • the presence of an electrophilic source or an oxidation/ligand exchange in the presence of a nucleophilic source (i.e., AgSCF3) and an oxidant (B in Scheme 4). Finally, after a reductive elimination step, the expected functionalized product 6 is obtained and the palladium catalyst is regenerated. In
  • (KIE = 2.7). Subsequently palladacycle C is oxidized by Selectfluor® to form a palladium(IV) complex D. After a ligand exchange with AgSCF3, the intermediate E is obtained, which, after reductive elimination, releases the desired product 12 and regenerates the catalyst. Alternatively, a ligand exchange
  • with AgSCF3 occurs before the oxidation step, generating the palladium(II) complex F. After an oxidative addition in the presence of Selectfluor®, the palladium(IV) intermediate E is generated. Finally, after reductive elimination step, the desired product 12 is released and the catalyst regenerated
PDF
Album
Review
Published 17 Apr 2023

Strategies to access the [5-8] bicyclic core encountered in the sesquiterpene, diterpene and sesterterpene series

  • Cécile Alleman,
  • Charlène Gadais,
  • Laurent Legentil and
  • François-Hugues Porée

Beilstein J. Org. Chem. 2023, 19, 245–281, doi:10.3762/bjoc.19.23

Graphical Abstract
PDF
Album
Review
Published 03 Mar 2023

Combining the best of both worlds: radical-based divergent total synthesis

  • Kyriaki Gennaiou,
  • Antonios Kelesidis,
  • Maria Kourgiantaki and
  • Alexandros L. Zografos

Beilstein J. Org. Chem. 2023, 19, 1–26, doi:10.3762/bjoc.19.1

Graphical Abstract
  • platforms [66], the group considered a system in which a photoexcited catalyst oxidatively cleaves a siloxycyclopropane with endo selectivity [67], leading to aryl–nickel capture and reductive elimination. Thus, when substrates 121 and 122 were photoirradiated with blue LED light at 45 °C in the presence of
PDF
Album
Review
Published 02 Jan 2023

Synthesis of novel alkynyl imidazopyridinyl selenides: copper-catalyzed tandem selenation of selenium with 2-arylimidazo[1,2-a]pyridines and terminal alkynes

  • Mio Matsumura,
  • Kaho Tsukada,
  • Kiwa Sugimoto,
  • Yuki Murata and
  • Shuji Yasuike

Beilstein J. Org. Chem. 2022, 18, 863–871, doi:10.3762/bjoc.18.87

Graphical Abstract
  • intermediate A to form a π-complex B, and a ligand exchange reaction from B occurs to produce intermediate D, together with the elimination of selenol C. The selenol C is oxidized to diselenide 2. Finally, the intermediate D undergoes a reductive elimination to form the desired product 4, with the regeneration
PDF
Album
Supp Info
Full Research Paper
Published 19 Jul 2022

Mechanochemical halogenation of unsymmetrically substituted azobenzenes

  • Dajana Barišić,
  • Mario Pajić,
  • Ivan Halasz,
  • Darko Babić and
  • Manda Ćurić

Beilstein J. Org. Chem. 2022, 18, 680–687, doi:10.3762/bjoc.18.69

Graphical Abstract
  • four mechanistic pathways could be involved in this reaction [51]. Three of them involve oxidative addition followed by reductive elimination. Neutral NBS or the hydrogen bond complex NBS∙∙∙TsOH are bromine donors in two of them, while protonated NBS is engaged in the third. The fourth mechanism
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2022

Recent developments and trends in the iron- and cobalt-catalyzed Sonogashira reactions

  • Surendran Amrutha,
  • Sankaran Radhika and
  • Gopinathan Anilkumar

Beilstein J. Org. Chem. 2022, 18, 262–285, doi:10.3762/bjoc.18.31

Graphical Abstract
  • iodides showed good to excellent yields when coupled with phenylacetylene. The proposed mechanism is similar to the standard palladium-catalyzed Sonogashira reaction with the steps involving oxidative addition of the aryl/vinyl halide followed by transmetallation, and reductive elimination. The mechanism
  • -phenanthroline as ligand resulted in a shorter reaction time and better yield in comparison with the other ligands tested. Mechanistically, the iron is oxidized from Fe(II) to Fe(III) in the reaction step by the addition of 2-iodophenol which is further followed by transmetallation and reductive elimination
  • product of reductive elimination regenerates the catalyst. Javidi and co-workers reported a sequence of magnetically separable catalysts which consisted of Schiff base complexes of metal ions supported on superparamagnetic Fe3O4 nanoparticles (Scheme 16) [32]. To examine their catalytic activity, a
PDF
Album
Review
Published 03 Mar 2022

Iridium-catalyzed hydroacylation reactions of C1-substituted oxabenzonorbornadienes with salicylaldehyde: an experimental and computational study

  • Angel Ho,
  • Austin Pounder,
  • Krish Valluru,
  • Leanne D. Chen and
  • William Tam

Beilstein J. Org. Chem. 2022, 18, 251–261, doi:10.3762/bjoc.18.30

Graphical Abstract
  • hydride, and C–C bond-forming reductive elimination. Computational results indicate the origin of regioselectivity is involved in the reductive elimination step. Keywords: C–H activation; density functional theory; hydroacylation; iridium catalysis; regioselectivity; Introduction Organic synthesis is
  • hydroacylation reactions [74][75][76][77][78], we propose a catalytic cycle utilizing iridium that proceeds with three key steps: (1) iridium(I) oxidative addition into the aldehyde C–H bond, (2) insertion of the olefin into the iridium hydride, and (3) C–C bond-forming reductive elimination. The hydroacylation
  • last key step in the catalytic cycle involves the C–C bond-forming reductive elimination to form the final ketone intermediate IN3a or IN3b (Figure 1). Two possible transition states, 2aTS3a and 2bTS3b, can be located. The concerning free energy barrier about IN2a to IN3a, via 2aTS3a is 10.8 kcal/mol
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2022

Ready access to 7,8-dihydroindolo[2,3-d][1]benzazepine-6(5H)-one scaffold and analogues via early-stage Fischer ring-closure reaction

  • Irina Kuznetcova,
  • Felix Bacher,
  • Daniel Vegh,
  • Hsiang-Yu Chuang and
  • Vladimir B. Arion

Beilstein J. Org. Chem. 2022, 18, 143–151, doi:10.3762/bjoc.18.15

Graphical Abstract
  • the nitro group but also to cyclization and the reductive elimination of bromine to afford 3a. The synthesis of 3b could be realized in 58% yield by using iron powder under acidic conditions. Reaction of methyl 5-(2-nitrophenyl)-4-oxopentanoate [44] and 1-benzyl-1-phenylhydrazine [36] hydrochloride in
PDF
Album
Supp Info
Full Research Paper
Published 26 Jan 2022

DABCO-promoted photocatalytic C–H functionalization of aldehydes

  • Bruno Maia da Silva Santos,
  • Mariana dos Santos Dupim,
  • Cauê Paula de Souza,
  • Thiago Messias Cardozo and
  • Fernanda Gadini Finelli

Beilstein J. Org. Chem. 2021, 17, 2959–2967, doi:10.3762/bjoc.17.205

Graphical Abstract
  • aldehydes to generate acyl radicals. The coupling of this radical to the Ni(0) complex furnishes the acyl−Ni(I) complex, which then proceeds oxidative addition to aryl bromide to generate the pentavalent Ni(III) complex. Lastly, reductive elimination affords the desired ketone and the Ni(I) complex, which
PDF
Album
Supp Info
Letter
Published 21 Dec 2021
Other Beilstein-Institut Open Science Activities